Role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila melanogaster wing imaginal disc.
نویسندگان
چکیده
When a fragment of a Drosophila imaginal disc is cultured in growth permissive conditions, it either regenerates the missing structures or duplicates the pattern present in the fragment. This kind of pattern regulation is known to be epimorphic, i.e. the new pattern is generated by proliferation in a specialized tissue called the blastema. Pattern regulation is accompanied by the healing of the cut surfaces restoring the continuous epithelia. Wound healing has been considered to be the inductive signal to commence regenerative cell divisions. Although the general outlines of the proliferation dynamics in a regenerating imaginal disc blastema have been well studied, little is known about the mechanisms driving cells into the regenerative cell cycles. In this study, we have investigated the role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila wing imaginal disc. By utilizing in vivo and in vitro culturing of incised and fragmented discs, we have been able to visualize the dynamics in cellular architecture and gene expression involved in the healing and regeneration process. Our results directly show that homotypic wound healing is not a prerequisite for regenerative cell divisions. We also show that JNK signaling participates in imaginal disc wound healing and is regulated by the physical dynamics of the process, as well as in recruiting cells into the regenerative cell cycles. A model describing the determination of blastema size is discussed.
منابع مشابه
Dev122564 3500..3511
Although tissue regeneration has been studied in a variety of organisms, from Hydra to humans, many of the genes that regulate the ability of each animal to regenerate remain unknown. The larval imaginal discs of the genetically tractable model organism Drosophila melanogaster have complex patterning, wellcharacterized development and a high regenerative capacity, and are thus an excellent mode...
متن کاملExtracellular Reactive Oxygen Species Drive Apoptosis-Induced Proliferation via Drosophila Macrophages
Apoptosis-induced proliferation (AiP) is a compensatory mechanism to maintain tissue size and morphology following unexpected cell loss during normal development, and may also be a contributing factor to cancer and drug resistance. In apoptotic cells, caspase-initiated signaling cascades lead to the downstream production of mitogenic factors and the proliferation of neighboring surviving cells....
متن کاملCap-n-collar promotes tissue regeneration by regulating ROS and JNK signaling in the Drosophila wing imaginal disc
متن کامل
Fold formation at the compartment boundary of Drosophila wing requires Yki signaling to suppress JNK dependent apoptosis
Compartment boundaries prevent cell populations of different lineage from intermingling. In many cases, compartment boundaries are associated with morphological folds. However, in the Drosophila wing imaginal disc, fold formation at the anterior/posterior (A/P) compartment boundary is suppressed, probably as a prerequisite for the formation of a flat wing surface. Fold suppression depends on op...
متن کاملRNAi-Mediated Knockdown Showing Impaired Cell Survival in Drosophila Wing Imaginal Disc
The genetically amenable organism Drosophila melanogaster has been estimated to have 14,076 protein coding genes in the genome, according to the flybase release note R5.13 (http://flybase.bio.indiana.edu/static_pages/docs/release_notes.html). Recent application of RNA interference (RNAi) to the study of developmental biology in Drosophila has enabled us to carry out a systematic investigation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 49 4 شماره
صفحات -
تاریخ انتشار 2005